Hyperkähler structures on the cotangent bundle of the restricted grassmannian and on a natural complexification of the restricted grassmannian
نویسنده
چکیده
In this paper, we describe an example of a hyperkähler quotient of a Banach manifold by a Banach Lie group. Although the initial manifold is not diffeomorphic to a Hilbert manifold (not even to a manifold modelled on a reflexive Banach space), the quotient space obtained is a Hilbert manifold, which can furthermore be identified either with the cotangent space of a connected component Gr res of the restricted grassmannian or with a natural complexification of this connected component, thus proving that these two manifolds are isomorphic hyperkähler manifolds. Moreover, Kähler potentials associated with the natural complex structure of the cotangent space of Gr res and with the natural complex structure of the complexification of Gr res are computed using Kostant-Souriau’s theory of prequantization. Résumé Dans cet article, nous présentons un exemple de quotient hyperkählérien d’une variété banachique par un groupe de Lie banachique. Bien que la variété initiale ne soit pas difféomorphe à une variété hilbertienne (ni même à une variété modelée sur un espace de Banach réflexif), l’espace quotient obtenu est une variété hilbertienne, qui peut être identifiée, selon la structure complexe distinguée, soit à l’espace cotangent d’une composante connexe Gr res de la grassmannienne restreinte, soit à une complexification naturelle de cette même composante connexe. De plus, les potentiels kählériens associés respectivement à la structure complexe naturelle de l’espace cotangent de Gr res et à la structure complexe naturelle de la complexification de Gr res sont calculés à l’aide de la théorie de préquantisation de Kostant-Souriau.
منابع مشابه
Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits
In this paper, we construct a hyperkähler structure on the complexification OC of any Hermitian symmetric affine coadjoint orbit O of a semi-simple L∗-group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of O. By the identification of the complex orbit OC with the cotangent space T ′O of O induced by Mostow...
متن کاملHyperkähler structures and infinite-dimensional Grassmannians
In this paper, we describe an example of a hyperkähler quotient of a Banach manifold by a Banach Lie group. Although the initial manifold is not diffeomorphic to a Hilbert manifold (not even to a manifold modelled on a reflexive Banach space), the quotient space obtained is a Hilbert manifold, which can be furthermore identified either with the cotangent space of a connected component Gr res, (...
متن کاملDifferential Geometry of Curves in Lagrange Grassmannians with given Young Diagram
Curves in Lagrange Grassmannians appear naturally in the intrinsic study of geometric structures on manifolds. By a smooth geometric structure on a manifold we mean any submanifold of its tangent bundle, transversal to the fibers. One can consider the time-optimal problem naturally associate with a geometric structure. The Pontryagin extremals of this optimal problem are integral curves of cert...
متن کاملChern Numbers and the Geometry of Partial Flag Manifolds
We calculate the Chern classes and Chern numbers for the natural almost Hermitian structures of the partial flag manifolds Fn = SU(n + 2)/S(U(n) × U(1) × U(1)). For all n > 1 there are two invariant complex algebraic structures, which arise from the projectivizations of the holomorphic tangent and cotangent bundles of CP. The projectivization of the cotangent bundle is the twistor space of a Gr...
متن کاملQuasi-Equiangular Frame (QEF) : A New Flexible Configuration of Frame
Frame theory is a powerful tool in the domain of signal processing and communication. Among its numerous configurations, the ones which have drawn much attention recently are Equiangular Tight Frames(ETFs) and Grassmannian Frames. These frames both have optimality in coherence, thus bring robustness and optimal performance in applications such as digital fingerprint, erasure channels, and Compr...
متن کامل